

Brief Contents

1 Biology: Exploring Life 42

UNIT I

The Life of the Cell

- 2 The Chemical Basis of Life 62
- 3 The Molecules of Cells 78
- 4 A Tour of the Cell 96
- 5 The Working Cell 118
- 6 How Cells Harvest Chemical Energy 134
- 7 Photosynthesis: *Using Light to Make Food* 152

UNIT II

Cellular Reproduction and Genetics

- 8 The Cellular Basis of Reproduction and Inheritance 170
- 9 Patterns of Inheritance 198
- 10 Molecular Biology of the Gene 226
- 11 How Genes Are Controlled 254
- 12 DNA Technology and Genomics 276

UNIT III

Concepts of Evolution

- 13 How Populations Evolve 300
- **14** The Origin of Species 322
- **15** Tracing Evolutionary History 338

UNIT IV

The Evolution of Biological Diversity

- **16** Microbial Life: *Prokaryotes and Protists* **364**
- 17 The Evolution of Plant and Fungal Diversity 386
- **18** The Evolution of Invertebrate Diversity 410
- 19 The Evolution of Vertebrate Diversity 434

UNIT V

Animals: Form and Function

- 20 Unifying Concepts of Animal Structure and Function 458
- **21** Nutrition and Digestion 474
- 22 Gas Exchange 498
- 23 Circulation 512
- 24 The Immune System 530
- 25 Control of Body Temperature and Water Balance 550
- 26 Hormones and the Endocrine System 562
- 27 Reproduction and Embryonic Development 578
- 28 Nervous Systems 608
- 29 The Senses 632
- 30 How Animals Move 648

UNIT VI

Plants: Form and Function

- **31** Plant Structure, Growth, and Reproduction 666
- 32 Plant Nutrition and Transport 688
- 33 Control Systems in Plants 706

UNIT VII

Ecology

- 34 The Biosphere: *An Introduction to Earth's Diverse Environments* 724
- 35 Behavioral Adaptations to the Environment 744
- **36** Population Ecology 768
- 37 Communities and Ecosystems 784
- **38** Conservation Biology 806

Pearson Education Limited KAO Two KAO Park Hockham Way Harlow Essex

Essex CM17 9SR

United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2022

The rights of Martha R. Taylor, Eric J. Simon, Jean L. Dickey, and Kelly Hogan to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Campbell Biology: Concepts & Connections, 10th Edition, ISBN 978-0-13-526916-9 by Martha R. Taylor, Eric J. Simon, Jean L. Dickey, and Kelly Hogan, published by Pearson Education © 2021.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

PEARSON, ALWAYS LEARNING, MasteringTM Biology, and BioFlix® are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any time.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

ISBN 10: 1-292-40134-6 ISBN 13: 978-1-292-40134-8 eBook ISBN 13: 978-1-292-40145-4

Typeset by SPi Global

About the Authors

Martha R. Taylor has been teaching biology for more than 35 years. She earned her B.A. in biology from Gettysburg College and her M.S. and Ph.D. in science education from Cornell University. At Cornell, Dr. Taylor has served as assistant director of the Office of Instructional Support and has taught introductory biology for both majors and nonmajors. Most recently, she was a

lecturer in the Learning Strategies Center, teaching supplemental biology courses. Her experience working with students in classrooms, in laboratories, and with tutorials has increased her commitment to helping students create their own knowledge of and appreciation for biology. She was the author of the *Student Study Guide* for ten editions of *Campbell Biology*.

Eric J. Simon is a professor in the Department of Biology and Health Science at New England College in Henniker, New Hampshire. He teaches introductory biology to science majors and nonscience majors, as well as upper-level courses in tropical marine biology and careers in science. Dr. Simon received a B.A. in biology and computer science and an M.A. in biology

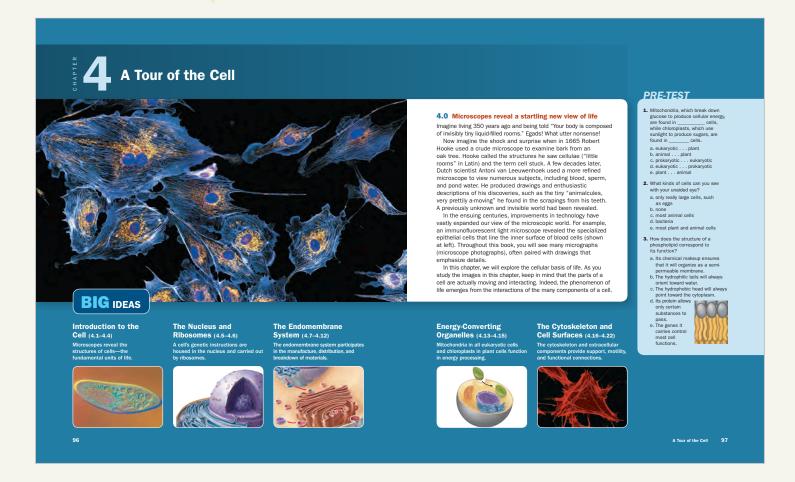
from Wesleyan University, and a Ph.D. in biochemistry from Harvard University. His research focuses on innovative ways to use technology to improve teaching and learning in the science classroom. Dr. Simon also leads numerous international student field research trips and is a Scientific Advisor to the Elephant Conservation Center in Sayaboury, Laos. Dr. Simon is the lead author of the introductory nonmajors biology textbooks *Campbell Essential Biology*, Seventh Edition, and *Campbell Essential Biology with Physiology*, Sixth Edition, and the author of the introductory biology textbook *Biology: The Core*, Third Edition.

Jean L. Dickey is Professor Emerita of Biological Sciences at Clemson University (Clemson, South Carolina). After receiving her B.S. in biology from Kent State University, she went on to earn a Ph.D. in ecology and evolution from Purdue University. In 1984, Dr. Dickey joined the faculty at Clemson, where she devoted her career to teaching biology to nonscience majors

in a variety of courses. In addition to creating content-based instructional materials, she developed many activities to engage lecture and laboratory students in discussion, critical thinking, and writing, and implemented an investigative laboratory curriculum in general biology. Dr. Dickey is author of *Laboratory Investigations for Biology*, Second Edition, and coauthor of *Campbell Essential Biology*, Seventh Edition, and *Campbell Essential Biology with Physiology*, Sixth Edition.

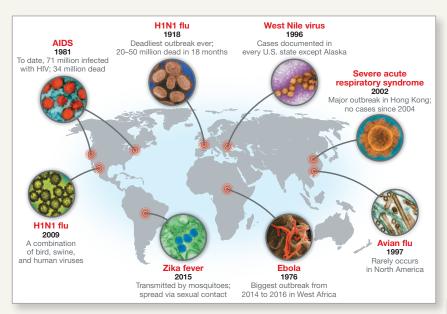
Kelly Hogan is a faculty member in the Department of Biology at the University of North Carolina at Chapel Hill, teaching introductory biology and genetics. Dr. Hogan teaches hundreds of students at a time, using active-learning methods that incorporate educational technologies both inside and outside of the classroom. She received her

B.S. in biology at the College of New Jersey and her Ph.D. in pathology at the University of North Carolina, Chapel Hill. Her research interests focus on how large classes can be more inclusive through evidence-based teaching methods and technology. As the Director of Instructional Innovation at UNC, she encourages experienced faculty to take advantage of new professional development opportunities and inspires the next generation of innovative faculty. Dr. Hogan is the author of *Stem Cells and Cloning*, Second Edition, and co-author on *Campbell Essential Biology with Physiology*, Sixth Edition.



Neil A. Campbell (1946–2004) combined the inquiring nature of a research scientist with the soul of a caring teacher. Over his 30 years of teaching introductory biology to both science majors and nonscience majors, many thousands of students had the opportunity to learn from him and be stimulated by his enthusiasm for the study of life. While he is greatly missed

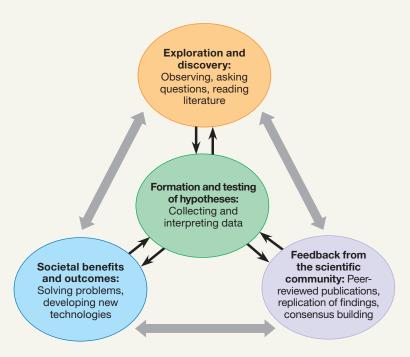
by his many friends in the biology community, his coauthors remain inspired by his visionary dedication to education and are committed to searching for ever better ways to engage students in the wonders of biology.


Open up the World of Biology

NEW! Chapter Openers invite students into each chapter with a brief preview of what will be covered to help them learn and retain information. Written in a casual style, the Chapter Openers feature three pre-test questions that follow Bloom's taxonomy.

1

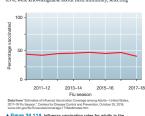
Build Science Literacy Skills



Visualizing the Data Figures are eye-catching infographics designed to provide students with a fresh approach to understanding concepts illustrated by quantitative information.

Scientific Thinking modules

explore how scientists use the process of science and discovery. End-ofmodule questions prompt students to think critically.



24.11 Why is herd immunity so difficult with the flu?

Winny is herd immunity so difficult \
\text{SCIENTIFE}
Who doesn't get vaccinated against the fixed with the fixed by the

A survey from 2010 of more than 4,000 adults provided insight into why people choose not to be vaccinated. The top reason given by people not vaccinated that year was "they didn't need it." While many people feel they are healthy enough to withstand the flu if they become infected, they are overlooking the goal of herd immunity, which is to protect everyone. The most vulnerable people—children, the elderly, and pregnant women—make up the majority of deaths from the flu. As we learned in our previous module, herd immunity population is searcharded. Although scientists disagree on the exact percentage of the population that needs to be vaccinated against influenza, some estimates suggest it as high as 70%. Combining this information with the data in Figure 24.11A clearly shows the need to increase vaccination rates.

as 70%. Combining this information with the data in Figure 24.11A clearly shows the need to increase vaccination rates. An interdisciplinary research team from the University of Minnesota (including expertise in public health; statistics, and philosophy) wondered if people in their state knew about herd minumity. Would learning about it impact their decision about whether to get the flux vaccine? For four days at a state fair in August 2016, the team asked the general public a variety of questions. Figure 24.118 shows a few questions from their survey, highlighting that the same question was asked before and after participants were given information about herd immunity. The researchers found that most people surveyed, about 63%, were knowledgeable about herd immunity, selecting

choice "a" from the first question in Figure 24.11B. Of those who were not knowledgeable, there was a 7.5% increase in those who planned to get vaccinated, a statistically significant increase.

search demonstrate that educating people about herd immunity can impact their decision-making about vacciminimity can impact interaction-making about variantian dependent in the nation. Yet changing someone's attitude is different from changing their behavior, and we don't know if people in this study followed through and actually got the vaccine. Until more people receive the flu vaccine, we're not likely to see a large change in the number of deaths caused by the influenza virus.

the influenza virus.

Currently, the fluis responsible for a lot of deaths, making the top-10 list of leading causes of death in the United States. In 2015, over 10,000 people died from influenza and its complications. To put that into perspective, in that same year, there were 80,000 deaths resulting from diabetes, and 40,000 people ded from liver dieseas. Still, though, many people seem to think the flui is harmless?

seem to think the flu is harmless!

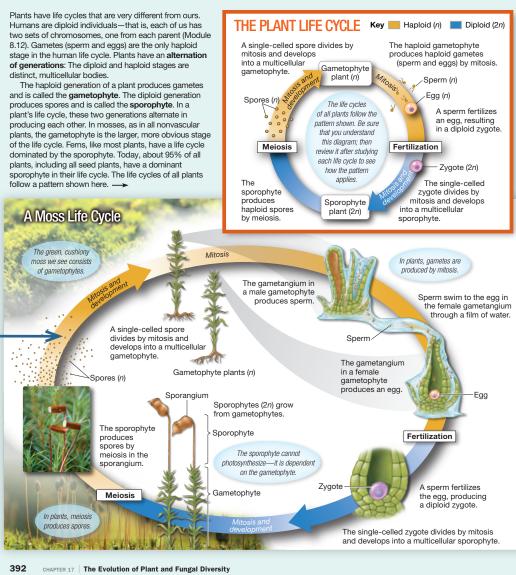
The flu is the only leading cause of death that has an available vaccine, and yet year after year, low flu vaccination rates are a problem. As this study showed, a scientific approach can help us learn about public attitudes toward the flu vaccine and test solutions to improve the vaccination rate.

▲ Figure 24.11B A selection of survey questions from the st "What Have You Heard about the Herd?"

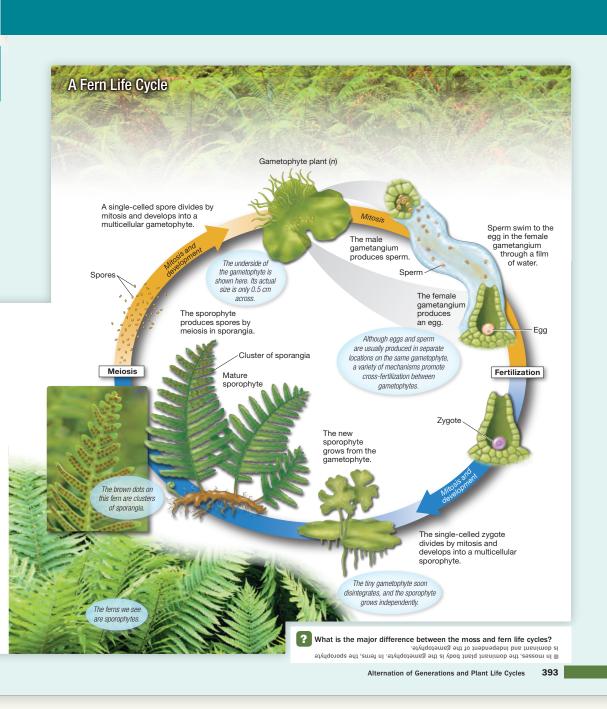
Presentation of the process of science in chapter 1 demonstrates to students the iterative nature of scientific research.

Visualize Tough Topics

Visualizing the **Concept Modules**


bring dynamic visuals and text together to walk students through tough concepts. The tenth edition features 28 of these immersive modules. Select modules are assignable in **Mastering Biology** as animated videos.

Embedded text coaches students through key points and helps address common misunderstandings.


Alternation of Generations and Plant Life Cycles

VISUALIZING THE CONCEPT

17.3 Haploid and diploid generations alternate in plant life cycles

and Develop Understanding

Streamlined text and illustrations step students through the concept.

Encourage Focus on

Main headings allow students to see the big picture.

A Central Concept

at the start of each module helps students to focus on one concept at a time.

Gene Cloning and Editing

12.1 Genes can be cloned in recombinant plasmids

Although it may seem like a modern field, **biotechnology**, the manipulation of organisms or their components to make useful products, actually dates back to the dawn of civilization. Consider such ancient practices as the use of yeast to make beer and bread, and the selective breeding of livestock, dogs, and other animals. But when people use the term *biotechnology* today, they are usually referring to **DNA technology**, modern laboratory techniques for studying and manipulating genetic material. Using these methods, scientists can, for instance, extract genes from one organism and transfer them to another, effectively moving genes between species as different as *Escherichia coli* bacteria, papaya, and fish.

In the 1970s, the field of biotechnology was advanced by the invention of methods for making recombinant DNA in the lab. **Recombinant DNA** is formed

when scientists combine pieces of DNA from two different sources-often different species-in vitro (in a test tube) to form a single DNA molecule. Today, recombinant DNA technology is widely used for genetic engineering, the direct manipulation of genes for practical purposes. Scientists have genetically engineered bacteria to mass-produce a variety of useful chemicals, from cancer drugs to pesticides. Scientists have also transferred genes from bacteria into plants and from one animal species into another (Figure 12.1A).

To manipulate genes in the laboratory, biologists often use bacterial **plasmids**, small, circular DNA molecules that replicate (duplicate) separately from the much larger bacterial chromosome (see Module 10.23).

Plasmids typically carry only a few genes, can easily be transferred into bacteria, and are passed from one generation to the next. Because plasmids are easily manipulated to carry virtually any genes, they are key tools for **DNA cloning**, the production of many identical copies of a target segment of DNA. Through DNA cloning, scientists can mass produce many useful products.

Consider a typical genetic engineering challenge: A molecular biologist at a pharmaceutical company has identified a gene that codes for a valuable product, a hypothetical substance called protein V. The biologist wants to manufacture the protein on a large scale. The biggest challenge in such an effort is of the "needle in a haystack" variety: The gene of interest is one relatively tiny segment embedded in a much longer DNA molecule. Figure 12.1B illustrates how the techniques of gene cloning can be used to mass produce a desired gene.

To begin, the biologist isolates two kinds of DNA: ① a bacterial plasmid (usually from the bacterium *E. coli*) that will serve as the **vector**, or gene carrier, and ② the DNA from another organism ("foreign" DNA) that includes the gene that codes for protein V (gene *V*) along with other, unwanted genes. The DNA containing gene *V* could come from a variety of sources, such as a different bacterium, a plant, a nonhuman animal, or even human tissue cells growing in laboratory culture.

> millions of plasmids and DNA fragments, most of which do not contain gene V,

are treated simultaneously.

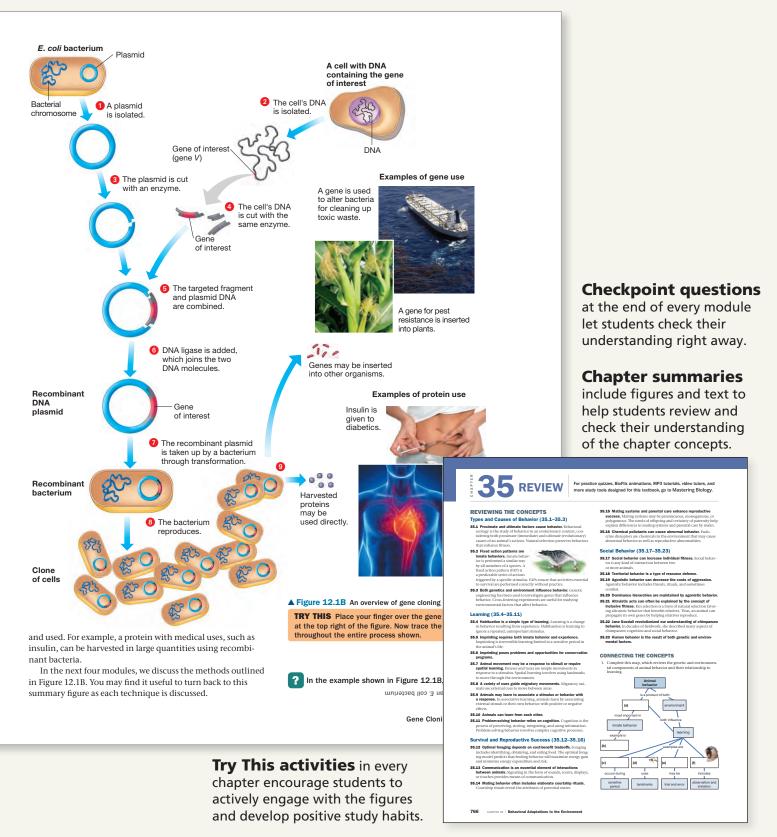
The cut DNA from both sources—the plasmid and target gene—are mixed.
The single-stranded ends of the plasmid base-pair with the complementary ends of the target DNA fragment (see Module 10.3 if you need a refresher on the DNA base-pairing rules). The enzyme DNA

ligase joins the two DNA molecules by way of covalent bonds. This enzyme, which the cell normally uses in DNA replication (see Module 10.4), is a "DNA pasting" enzyme that catalyzes the formation of covalent bonds

between adjacent nucleotides, joining the strands. The resulting plasmid is a recombinant DNA molecule.

▲ Figure 12.1A Glowing aquarium fish (Amatitlania

nigrofasciatus, a type of cichlid) produced by transferring


7 The recombinant plasmid containing the targeted gene is mixed with bacteria. Under the right conditions, a bacterium takes up the plasmid DNA by transformation (see Module 10.22). 3 The recombinant bacterium then reproduces through repeated cell cycles to form a **clone** of cells, a population of genetically identical cells. In this clone, each bacterium carries a copy of gene V. When DNA cloning involves a gene-carrying segment of DNA (as it does here), it is called **gene cloning**. In our example, the biologist will eventually grow a cell clone large enough to produce protein V in marketable quantities.

• Gene cloning can be used for two basic purposes. Copies of the gene itself can be the immediate product, to be used in additional genetic engineering projects. For example, a pest-resistance gene present in one plant species might be cloned and transferred into plants of another species. Other times, the protein product of the cloned gene is harvested.

CHAPTER 12 | DNA Technology and Genomics

Figures describing a process take students
through a series of numbered
steps keyed to explanations
in the text.

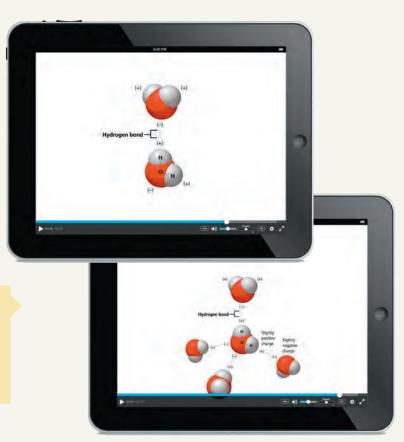
Key Concepts and Active Learning

Dynamic Digital Resources

Key Topic Overview videos introduce students to key concepts and vocabulary and are created by authors Eric Simon, Jean Dickey and Kelly Hogan. All 12 videos are delivered as a whiteboard style mini-lesson and are accompanied by assessment so that students can check their understanding.

Abiotic (nonliving)
factors
(hiesia (living)
factors

0 testa (living)
factors


Dynamic Study Modules provide students with multiple sets of questions with extensive feedback so that they can test, learn, and retest until they achieve mastery of the textbook material.

Bring Biology to Life

NEW! Figure Walkthroughs videos guide students through key figures with narrated explanations, figure markups, and questions that reinforce important points. Questions embedded in each Figure Walkthrough encourage students to be active participants in their learning.

Give students extra practice with **assignable Visualizing the Concept videos**, which pair with the select modules in the text.

Everything Students and Instructors

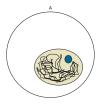
HHMI Short Films are documentaryquality movies from the Howard Hughes Medical Institute with explorations from the discovery of the double helix to evolution and include assignable questions.

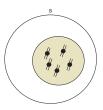
UPDATED Active Reading Guides are

designed to aid students in getting the most out of their reading and are aimed at moving them from passive learning to active learning. Active Reading Guides accompany every chapter and are available for students to download and complete in the Mastering Study Area.

Resources to help instructors plan dynamic lectures:

- Ready-to-Go Teaching Modules help instructors efficiently make use of the available teaching tools for the toughest topics.
- The **Instructor Exchange** provides active learning techniques from biology instructors around the nation. Co-author Kelly Hogan moderates the exchange.


Chapter 4: A Tour of the Cell


Big idea: The nucleus and ribosomes

Answer the following questions as you read modules 4.5-4.6:

DNA and its associated proteins are referred to as ______

 $2. \quad \text{Which of the following cells would be preparing to divide? Briefly explain your answer.} \\$

3. Complete the following table that compares rRNA to mRNA.

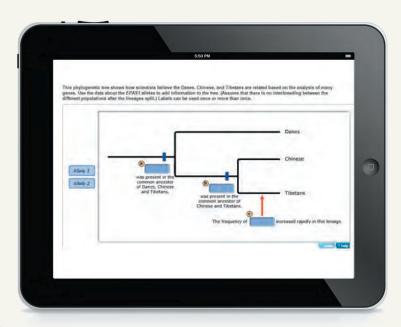
	rRNA	mRNA
Role in/part of		
Made in		
Travels to		

 Briefly describe the relationship between the nucleus and ribosomes. Your answer should include the following key terms: mRNA, rRNA, and protein synthesis.

Need to Succeed in Mastering Biology

Learning Catalytics is a "bring your own device" (laptop, smartphone, or tablet) engagement, assessment, and classroom intelligence system that allows for active learning and discussion.

Try This questions in Learning Catalytics are easy to assign in-class active learning questions, based on the text "Try This" feature.


Engage in Biology Anytime, Anywhere

Scientific Thinking Activities

help students develop an understanding of how scientific research is conducted.

Examples of topics include:

- What Is the Role of Peer Review in the Process of Science?
- How Does "Citizen Science" Affect Scientific Data Collection?
- Do the Microorganisms in Our Digestive Tract Play a Role in Obesity?

Argentina Battles Major
Outbreak of Dengue as
Mosquito Population Swells

By JONATHAN CILBERT FEB. 17, 2018

OOO OOO OOO

A fumigation squad in Buenos Aires last month. Argentina reported nearly 4,900 cases of dengue in the first five weeks of 2016.

Natacha Pisarenko/Associated Press

BUENOS AIRES — Argentina is grappling with its worst outbreak of dangue in seven years at the population of

Current Events Activities cover a wide range of biological topics to demonstrate to students how science connects to everyday life.

with Mastering Biology

Evaluating Science in the Media Activities teach students to recognize validity, bias, purpose, and authority in everyday sources of information.

NEW Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience available within Mastering. It allows students to easily highlight, take notes, and review key vocabulary all in one place—even when offline. Seamlessly integrated videos and other rich media engage students and give them access to the help they need, when they need it.

Preface

nspired by the thousands of students in our own classes over the years and by enthusiastic feedback from the many instructors who have used or reviewed our book, we are delighted to present this new, Tenth Edition. We authors have worked together closely to ensure that both the book and the supplementary material online reflect the changing needs of today's courses and students, as well as current progress in biology. Titled Campbell Biology: Concepts & Connections to honor Neil Campbell's founding role and his many contributions to biology education, this book continues to have a dual purpose: to engage students from a wide variety of majors in the wonders of the living world and to show them how biology relates to their own existence and the world they inhabit. Most of these students will not become biologists themselves, but their lives will be touched by biology every day. Understanding the concepts of biology and their connections to our lives is more important than ever. Whether we're concerned with our own health or the health of our planet, a familiarity with biology is essential. This basic knowledge and an appreciation for how science works have become elements of good citizenship in an era when informed evaluations of health issues, environmental problems, and applications of new technology are critical.

Concepts and Connections

Concepts Biology is a vast subject that gets bigger every year, but an introductory biology course is still only one or two semesters long. This book was the first introductory biology textbook to use concept modules to help students recognize and focus on the main ideas of each chapter. The heading of each module is a carefully crafted statement of a key concept. For example, "Helper T cells stimulate the humoral and cell-mediated immune responses" announces a key concept about the role of helper T cells in adaptive immunity (Module 24.12). Such a concept heading serves as a focal point, and the module's text and illustrations converge on that concept with explanation and, often, analogies. The module text walks the student through the illustrations, just as an instructor might do in class. And in teaching a sequential process, such as the one diagrammed in Figure 24.12A, we number the steps in the text to correspond to numbered steps in the figure. The synergy between a module's narrative and graphic components transforms the concept heading into an idea with meaning to the student. The checkpoint question at the end of each module encourages students to test their understanding as they proceed through a chapter. Finally, in the Chapter Review, all the key concept statements are listed and briefly summarized under the overarching section titles, explicitly reminding students of what they've learned.

Connections Students are more motivated to study biology when they can connect it to their own lives and interests—for example, when they are able to relate science to health issues, economic problems, environmental quality, ethical controversies, and social responsibility. In this edition, purple Connection icons mark the numerous application modules that go beyond the core biological concepts. For example, Connection Module 32.6 describes how humans tap into plant transport mechanisms for harvesting such materials as maple syrup and latex. In addition, our Evolution Connection modules, identified by green icons, connect the content of each chapter to the grand unifying theme of evolution, without which the study of life has no coherence. For example, the Evolution Connection in Chapter 14 uses data from studies by Rosemary and Peter Grant and their students to demonstrate the continuing effects of natural selection on Darwin's finches. Explicit connections are also made between the chapter introduction and either the Evolution Connection module or the Scientific Thinking module in each chapter. And, connections are made in every chapter between key concepts and the core concepts of biology.

In This Edition

NEW! Chapter Openers Re-envisioned We have redesigned the opening of every chapter of the text, based on our own data analytics and feedback from students and instructors. The result is more visual, more interactive, and more engaging. The opening narrative has been shortened, the Big Ideas covered in the chapter are clearly described, and pre-test questions help students prepare themselves for the new content. Additionally, all chapter-opening essays are now assigned a module number, making them easier to assign and assess.

Focus on Five Underlying Themes of Biology

A major goal of this Tenth Edition is to provide students with an explicit framework for understanding and organizing the broad expanse of biological information presented in Concepts and Connections. This framework is based on the five major themes outlined in Vision and Change in Undergraduate Biology Education: A Call to Action published by the American Academy for the Advancement of Science. These major themes extend across all areas of biology: evolution, the flow of information, the correlation of structure and function, the exchange of energy and matter, and the interactions and interconnections of biological systems. Chapter 1 introduces each of these themes in a separate module. Specific examples of the themes are then called out in each chapter by green icons: INFORMATION,

STRUCTURE AND FUNCTION, ENERGY AND MATTER

INTERACTIONS, and

EVOLUTION CONNECTION (always in module form).

Expanded Coverage of the Process of Science

Chapter 1 also includes an enhanced focus on the nature of science and the process of scientific inquiry, setting the stage for both the content of the text and the process by which our biological knowledge has been built and continues to grow. We continue this emphasis on the process of scientific inquiry through our Scientific Thinking modules in every chapter, which are called out with an orange icon. The concept check questions for these modules focus on aspects of the process of science: the forming and testing of hypotheses; experimental design; variables and controls; the analysis of data; and the evaluation and communication of scientific results.

Visualizing the Concept Modules These modules, which were new to the Eighth Edition, have raised our hallmark art-text integration to a new level. Visualizing the Concept modules take challenging concepts or processes and walk students through them in a highly visual manner, using engaging, attractive art; clear and concise labels; and instructor "hints" called out in light blue bubbles. These short hints emulate the one-on-one coaching an instructor might provide to a student during office hours and help students make key connections within the figure. Examples of Visualizing the Concept modules include Module 6.11, Most ATP production occurs by oxidative phosphorylation; Module 8.17, Crossing over further increases genetic variability; Module 13.14, Natural selection can alter variation in a population in three ways; Module 28.6, Neurons communicate at synapses, and Module 34.18, The global water cycle connects aquatic and terrestrial biomes.

Visualizing the Data Figures First introduced in the Ninth Edition, these figures present data in an infographic form, marked by Visualizing the Data icons. These 19 eye-catching figures provide students with a fresh approach to understanding the concepts illustrated by graphs and numerical data. Figure 10.19 maps emergent virus outbreaks, showing that they originate throughout the world. Figure 12.17 summarizes a wealth of bioinformatics data on genome sizes versus the number of genes found in various species. Figure 13.16 illustrates the growing threat of antibiotic resistant bacteria. Figure 21.14 allows students to directly compare caloric intake (via food) with caloric expenditure (via exercise). Figure 30.5B shows changes in bone mass during the human life span. Figure 36.11 offers an illuminating visual comparison of the per capita and national ecological footprints of several countries with world average and "fair share" footprints. Figure 38.3 shows graphic evidence of global warming by tracking annual global temperatures since 1880.

Unit Openers That Feature Careers Related to the Content of the Unit Expanding our emphasis on the connections of biology to students' lives, each unit opener page now includes photos of individuals whose professions

relate to the content of the unit. For instance, Unit I features a brewery owner and a solar energy engineer. Unit IV portrays a hatchery manager and a paleoanthropologist. These examples are intended to help students see how their biology course relates to the world outside the classroom and to their own career paths.

The Latest Science Biology is a dynamic field of study, and we take pride in our book's currency and scientific accuracy. For this edition, as in previous editions, we have integrated the results of the latest scientific research throughout the book. We have done this carefully and thoughtfully, recognizing that research advances can lead to new ways of looking at biological topics; such changes in perspective can necessitate organizational changes in our textbook to better reflect the current state of a field. For example, Chapter 12 uses both text and art to present the innovative CRISPR-Cas9 system for gene editing. You will find a unit-by-unit account of new content and organizational improvements in the "New Content" section on pages 19–20 following this Preface.

Mastering Biology Mastering Biology, the most widely used online tutorial and assessment program for biology, continues to accompany Campbell Biology: Concepts & Connections. In addition to 170 author-created activities that help students learn vocabulary, extend the book's emphasis on visual learning, demonstrate the connections among key concepts (helping students grasp the big ideas), and coach students on how to interpret data, the Tenth Edition features assignable videos. These videos bring this text's Visualizing the Concept modules to life, help students learn how to evaluate sources of scientific information for reliability, and include short news videos that engage students in the many ways course concepts connect to the world outside the classroom. Mastering Biology for Campbell Biology: Concepts & Connections, Tenth Edition, will help students to see strong connections through their text, and the additional practice available online allows instructors to capture powerful data on student performance, thereby making the most of class time.

This Book's Flexibility

Although a biology textbook's table of contents is by design linear, biology itself is more like a web of related concepts without a single starting point or prescribed path. Courses can navigate this network by starting with molecules, with ecology, or somewhere in-between, and courses can omit topics. *Campbell Biology: Concepts & Connections* is uniquely suited to offer flexibility and thus serve a variety of courses. The seven units of the book are largely self-contained, and in a number of the units, chapters can be assigned in a different order without much loss of coherence. The use of numbered modules makes it easy to skip topics or reorder the presentation of material.

For many students, introductory biology is the only science course that they will take during their college years. Long after today's students have forgotten most of the specific content of their biology course, they will be left with general impressions and attitudes about science and scientists. We hope that this new edition of *Campbell Biology: Concepts & Connections* helps make those impressions positive and supports instructors' goals for sharing the fun of biology. In our continuing efforts to improve the book and its supporting materials, we benefit tremendously from instructor and student feedback, not only in formal reviews but also via informal communication. Please let us know how we are doing and how we can improve the next edition of the book.

Martha Taylor

mrt2@cornell.edu

Eric Simon

(Chapters 1–5, 7–10, 12, 21, 27, and 31–33), SimonBiology@gmail.com

Jean Dickey

(Units III and IV and Chapters 22, 30, 34, and 36–37), dickeyj@clemson.edu

Kelly Hogan

(Chapters 6, 11, 20, 23–26, 28, and 29), leek@email.unc.edu

Rebecca Burton

(Chapters 35 and 38) rebecca.burton@alverno.edu

Organization and New Content

elow are some important highlights of recent updates and organizational improvements in *Campbell Biology: Concepts & Connections*, Tenth Edition.

Chapter 1, Biology: Exploring Life Our expanded coverage of the nature of science and scientific inquiry has moved to the forefront of Chapter 1. The first of the five modules in this section provides a general description of data, hypothesis formation and testing, the centrality of verifiable evidence to science, and an explanation of scientific theories. The module describing how hypotheses can be tested using controlled experiments includes a subsection on hypothesis testing in humans. The Scientific Thinking module entitled Hypotheses can be tested using observational data, describes how multiple lines of evidence, including DNA comparisons, have helped resolve the classification of the red panda. The process of science is repetitive, nonlinear, and collaborative module presents a more accurate model of the process of science that includes four interacting circles: Exploration and Discovery; Forming and Testing Hypotheses: Analysis and Feedback from the Scientific Community; and Societal Benefits and Outcomes. The chapter concludes with the introduction of five core themes that underlie all of biology: evolution; information; structure and function; energy and matter; and interactions.

Unit I, The Life of the Cell This unit guides students from basic chemistry and the molecules of life through cellular structures to cellular respiration and photosynthesis. Throughout the Tenth Edition, the five themes introduced in Chapter 1 are highlighted with specific references. Examples from Unit 1 include "Illustrating our theme of **ENERGY AND MATTER**, we see that matter has been rearranged, with an input of energy provided by sunlight" (Module 2.9); "The flow of genetic instruction that leads to gene expression, summarized as DNA \rightarrow RNA \rightarrow protein, illustrates the important biological theme of **INFORMATION** " (Module 3.15); "The interconnections among these pathways provide a clear example of the theme of **INTERACTIONS** in producing the emergent property of a balanced metabolism" (Module 6.15); and "The precise arrangements of these membranes and compartments are essential to the process of photosynthesis—a classic example of the theme of **STRUCTURE AND FUNCTION** " (Module 7.2). The theme of evolution is featured, as it is in every chapter, in an Evolution Connection module, such as Module 4.15, Mitochondria and chloroplasts evolved by endosymbiosis. Two Visualizing the Concept modules are Module 2.6, Covalent bonds join atoms into molecules through electron sharing, and Module 6.9, Most ATP production occurs by oxidative phosphorylation. Both use art to guide students through these challenging topics. Connection Modules emphasize the process of science and societal interactions such as Module

3.6, Are we eating too much sugar? (which includes a Visualizing the Data figure on recommended and actual sugar consumption), and Module 7.14, Reducing both fossil fuel use and deforestation may moderate climate change (which includes updated information on the 2015 Paris climate accord). Orientation diagrams help students follow the various stages of cellular respiration and photosynthesis in Chapters 6 and 7. In Chapter 6, a new organization of the modules describing the three stages of cellular respiration allows more flexibility in reading and assigning either just the overview or both the overview plus in-depth coverage. Chapter 7 opens with a new topic on harnessing biofuels in Module 7.0 Sunlight can provide renewable energy for our cars.

Unit II, Cellular Reproduction and Genetics The purpose of this unit is to help students understand the relationship between DNA, chromosomes, and organisms and to help students see that genetics is not purely hypothetical but connects in many important and interesting ways to their lives, human society, and other life on Earth. The content has been reinforced with discussions of relevant topics, such as DCIS (also called stage 0 breast cancer), increased use of genetically modified organisms (GMOs), recent examples of DNA profiling, information about the 2015 California measles outbreak, a new infographic that charts emergent virus outbreaks, and new data on the health prospects of clones. This edition includes discussion of many recent advances in the field, such as an updated definition of the gene, and a largely new presentation of DNA technologies and bioinformatics, including extensive discussion in both text and art of the CRISPR-Cas9 system, GenBank, and BLAST searches. In some cases, sections within chapters have been reorganized to present a more logical flow of materials. Examples include an improved presentation of the genetics underlying cancer, a Visualizing the Concept module on crossing over, a circular genetic code chart that should improve student understanding, and a Visualizing the Data that summarizes relevant information about different types of cancer and their survival rates. Material throughout the unit has been updated to reflect recent data, such as the latest statistics on cancer, cystic fibrosis, and Down syndrome, an improved model of ribosomes, new information about prions, expanded coverage of noncoding small RNAs, new human gene therapy trials, recent information about Y chromosome inheritance, and what information home tests can reveal about your genetic heritage.

Unit III, Concepts of Evolution This unit presents the basic principles of evolution and natural selection, the overwhelming evidence that supports these theories, and their relevance to all of biology—and to the lives of students. For example, a Visualizing the Data figure (13.16) illustrates

the growing threat of antibiotic resistance. Chapter 13 also includes a Visualizing the Concept module (13.14) on the effects of natural selection that shows experimental data along with hypothetical examples. Chapter 14 contains an Evolution Connection module (14.9) featuring the work of Rosemary and Peter Grant on Darwin's finches. Modules 15.14 to 15.19 were revised to improve the flow and clarity of the material on phylogenetics and include updates from genomic studies and new art (for example, Figures 15.17 and 15.19A).

Unit IV, The Evolution of Biological Diversity The diversity unit surveys all life on Earth in less than a hundred pages! Consequently, descriptions and illustrations of the unifying characteristics of each major group of organisms, along with a small sample of its diversity, make up the bulk of the content. Two recurring elements are interwoven with these descriptions: evolutionary history and examples of relevance to our everyday lives and society at large. With the rapid accumulation of molecular evidence, taxonomic revisions are inevitable. These changes are reflected in Chapter 16, Microbial Life, with a module and figure (16.13) on protist supergroups, and in Chapters 18 and 19, Evolution of Invertebrate Diversity and Evolution of Vertebrate Diversity, with three modules about animal phylogeny (18.10, 18.11, and 19.1). The importance of metagenomics to the study of microorganisms is highlighted in Modules 16.1 and 16.7 (prokaryotes) and 17.14 (fungi). Examples of relevance include Candida auris, an emerging fungal pathogen of humans (Module 17.19), and a Visualizing the Data figure (19.16) on the evolution of human skin color.

Unit V, Animals: Form and Function This unit combines a comparative animal approach with an exploration of human anatomy and physiology. Chapter 20, Unifying Concepts of Animal Structure and Function, opens with Module 20.0 Evolution does not produce perfection, and the Evolution Connection, Module 20.1 follows with a discussion of the lengthy laryngeal nerve in giraffes. By illustrating that a structure in an ancestral organism can become adapted to function in a descendant organism without being "perfected," this example helps to combat a common student misconception about evolution. The main portion of every chapter in this unit is devoted to detailed presentations of human body systems, frequently illuminated by discussion of the health consequences of disorders in those systems. The Chapter 22 opener (22.0) and Scientific Thinking module (22.7) compare the conclusions from long term studies on the health hazards of cigarette smoking with the very recent research on the effects of e-cigarettes. In Chapter 23, Circulation, the Scientific Thinking module (23.6) discusses the consequences of treating coronary artery disease with medicine or both medicine and stents. Chapter 29, The Senses, incorporates material on common eye conditions, glaucoma and cataracts. Visualizing the Concept modules on osmoregulation (25.4) and neuronal synapses (28.6) help students better envision big concepts. Visualizing the Data figures detail data on hypertension in the United States (23.9B), worldwide HIV

infection and treatments (24.14B), and changes in bone mass during the human life span (30.5B). Chapter 21, Nutrition and Digestion, includes a discussion of human microbiome and microbiota presents the latest FDA requirements for food nutritional labels. Module 22.9, Breathing is automatically controlled, uses an equation showing the formation and dissociation of carbonic acid that accompanies the discussion of how the medulla regulates breathing and illustrates that process in Figure 22.9. In Chapter 24, a new Scientific Inquiry (Module 24.11 Why is herd immunity so difficult with the flu?) provides more resources for educators who want to discuss vaccination. Another new Scientific Inquiry module examines thermal image data around a mosquito feeding on warm blood (25.3). Updates in Chapter 28 reflect the current understanding about the numbers of neurons in humans (28.15) and help correct misconceptions for student about sleep (28.19).

Unit VI, Plants: Form and Function To help students gain an appreciation of the importance of plants, this unit presents the anatomy and physiology of angiosperms with frequent connections to the importance of plants to society. Connections modules include an improved discussion of agriculture via artificial selection on plant parts and via plant cloning in Chapter 31; discussions of organic farming, human harvesting of plant transport products (such as maple syrup and rubber), and GMOs in Chapter 32; and a discussion of caffeine as an evolutionary adaptation that can prevent herbivory in Chapter 33. The discussion of plant nutrients is presented as a large Visualizing the Data in Module 32.7, and the presentation of the potentially confusing topic of the effect of auxin on plant cell elongation also benefits from a visual presentation (Figure 33.3B). All of these examples are meant to make the point that human society is inexorably connected to the health of plants.

Unit VII, Ecology In this unit, students learn the fundamental principles of ecology and how these principles apply to environmental problems. The Tenth Edition features a Visualizing the Concept module that explains the global water cycle (34.18) and Visualizing the Data figures that compare ecological footprints (36.11), track global temperatures since 1880 (38.3A), and illustrate the results of a study on optimal foraging theory (35.12). The new focus of Module 35.0 is on the topic of how altruism can evolve. Module 35.16 has examples of the effects of endocrine-disrupting chemicals on animal behavior and the EPA's progress in evaluating endocrine disruptors in pesticides as potential hazards to human health. Other content updates in this unit include human population data (36.9 and 36.10) and species at risk for extinction (38.1). The unit-wide emphasis on climate change and sustainability continues in this edition with updates to the module on ecological footprints (36.11), rapid warming (38.3), rising concentrations of greenhouse gases (38.4) and the catastrophic 2018 fire season (38.5). The Scientific Thinking Module 38.11 has been revised to include the presentation of a study with data, making the module more focused on science skills.

Acknowledgments

his Tenth Edition of *Campbell Biology: Concepts & Connections* is a result of the combined efforts of many talented and hardworking people, and the authors wish to extend heartfelt thanks to all those who contributed to this and previous editions. Our work on this edition was shaped by input from the biologists acknowledged in the reviewer list on pages 22–24, who shared with us their experiences teaching introductory biology and provided specific suggestions for improving the book. Feedback from the authors of this edition's supplements and the unsolicited comments and suggestions we received from many biologists and biology students were also extremely helpful. In addition, this book has benefited in countless ways from the stimulating contacts we have had with the coauthors of *Campbell Biology*, Eleventh Edition.

We wish to offer special thanks to the students and faculty at our teaching institutions. Marty Taylor thanks her students at Cornell University for their valuable feedback on the book. Eric Simon thanks his colleagues and friends at New England College, especially within the Division of Natural and Social Sciences, for their continued support and assistance. Jean Dickey thanks her colleagues at Clemson University for their expertise and support. And Kelly Hogan thanks her students for their enthusiasm and colleagues at the University of North Carolina, Chapel Hill, for their continued support.

This edition benefited significantly from the efforts of contributor Rebecca S. Burton from Alverno College. Using her years of teaching expertise, Becky made substantial improvements to her two chapters. We thank Becky for bringing her considerable talents to this edition.

The superb publishing team for this edition was headed up by content strategy manager Josh Frost and content strategy director Jeanne Zalesky. We cannot thank them enough for their unstinting efforts on behalf of the book and for their commitment to excellence in biology education. We are fortunate to have had once again the contributions of content development director Ginnie Simione Jutson. We are similarly grateful to the members of the editorial development team—Evelyn Dahlgren, Alice Fugate and Mary Catherine Hager—for their steadfast commitment to quality. We thank them for their thoroughness, hard work, and good humor; the book is far better than it would have been without their efforts. Thanks also to supplements project editor Melissa O'Conner on her oversight of the supplements program and to the efficient and enthusiastic support she provided.

This book and all the other components of the teaching package are both attractive and pedagogically effective in large part because of the hard work and creativity of the production professionals on our team. We wish to thank

managing producer Mike Early and content producer Laura Perry. We also acknowledge copy editor Joanna Dinsmore, proofreader Gina Mushynsky, and indexer Razorsharp Communications, Inc. We again thank photo researcher Kristin Piljay for her contributions, as well as rights and permissions manager Matt Perry. Integra was responsible for composition, headed by production project manager Marianne Peters-Riordan, and the art house Lachina, headed by project manager Rebecca Marshall, who was responsible for overseeing the rendering of new and revised illustrations. We also thank manufacturing overseer Stacey Weinberger.

We thank Elise Lansdon for creating a beautiful and functional interior design and a stunning cover, and we are again indebted to design manager Mark Ong for his oversight and design leadership.

The value of *Campbell Biology: Concepts & Connections* as a learning tool is greatly enhanced by the hard work and creativity of the authors of the supplements that accompany this book: Ed Zalisko (*Instructor's Guide* and *PowerPoint*® Lecture Presentations); Jean DeSaix, Kristen Miller, Justin Shaffer, and Suann Yang (Test Bank); Dana Kurpius (Active Reading Guide); Bob Iwan (Reading Quizzes); Cheri LaRue (media correlator), and Brenda Hunzinger (Clicker Questions and Quiz Shows). In addition to supplements project editor Melissa O'Conner, the editorial and production staff for the supplements program included supplements production project manager Alverne Ball (Integra), Marsha Hall (PPS), and Jennifer Hastings (PPS). And the superlative Mastering Biology program for this book would not exist without Lauren Fogel, Stacy Treco, Katie Foley, Sarah Jensen, Chloé Veylit, Jim Hufford, Charles Hall, Caroline Power, and David Kokorowski and his team. And a special thanks to Arl Nadel and Sarah Young-Dualan for their thoughtful work on the Visualizing the Concepts interactive videos.

For their important roles in marketing the book, we are very grateful to marketing manager Christa Pelaez and vice president of marketing Christy Lesko. The members of the Pearson Science sales team have continued to help us connect with biology instructors and their teaching needs, and we thank them.

Finally, we are deeply grateful to our families and friends for their support, encouragement, and patience throughout this project. Our special thanks to Josie, Jason, Marnie, Alice, Jack, David, Paul, Ava, and Daniel (M.R.T.); Amanda, Reed, Forest, and my inspirations M.K., J.K., M.S., and J.J. (E.J.S.); Jessie and Katherine (J.L.D.); and Tracey, Vivian, Carolyn, Brian, Jake, and Lexi (K.H.)

Martha Taylor, Eric Simon, Jean Dickey, and Kelly Hogan

Reviewers

Reviewers

Ellen Baker, Santa Monica College Deborah Cardenas, Collin College Marc DalPonte, Lake Land College Tammy Dennis, Bishop State Community College Jean DeSaix, University of North Carolina, Chapel Hill Cynthia Galloway, Texas A&M University Jan Goerrissen, Orange Coast College Christopher Haynes, Shelton State Andrew Hinton, San Diego City College Duane Hinton, Washburn University Brenda Hunzinger, Lake Land College Robert Iwan, Inver Hills Community College Cheri LaRue, University of Arkansas, Fayetteville Barbara Lax, Community College of Allegheny County Brenda Leady, University of Toledo Sheryl Love, Temple University David Luther, George Mason University Steven MacKie, Pima County Community College Thaddeus McRae, Broward Community College Kristen Miller, University of Georgia Debbie Misencik, Community College of

Allegheny County
Justin Shaffer, University of California, Irvine
Erica Sharar, Santiago Canyon College
Patricia Steinke, San Jacinto College Central
Jennifer Stueckle, West Virginia University
Sukanya Subramanian, Collin County
Community College

Brad Williamson, *University of Kansas* Suann Yang, *Presbyterian College* Edward Zalisko, *Blackburn College*

Media Review Panel, Ninth Edition

Bob Iwan, *Inver Hills Community College* Cheri LaRue, *University of Arkansas* Linda Logdberg Lindsay Rush, *Quinnipiac University* Sukanya Subramanian, *Collin County Community*

Reviewers of Previous Editions

Michael Abbott, Westminster College
Tanveer Abidi, Kean University
Daryl Adams, Mankato State University
Dawn Adrian Adams, Baylor University
Olushola Adeyeye, Duquesne University
Shylaja Akkaraju, Bronx Community College
Felix Akojie, Paducah Community College
Dan Alex, Chabot College
John Aliff, Georgia Perimeter College
Sylvester Allred, Northern Arizona University
Jane Aloi-Horlings, Saddleback College
Loren Ammerman, University of Texas at Arlington
Dennis Anderson, Oklahoma City
Community College

Marjay Anderson, Howard University
Steven Armstrong, Tarrant County College
Bert Atsma, Union County College
Yael Avissar, Rhode Island College
Gail Baker, LaGuardia Community College
Caroline Ballard, Rock Valley College
Andrei Barkovskii, Georgia College and
State University

Mark Barnby, Ohlone College Chris Barnhart, University of San Diego Stephen Barnhart, Santa Rosa Junior College William Barstow, University of Georgia Kirk A. Bartholomew, Central Connecticut State University

Michael Battaglia, Greenville Technical College
Gail Baughman, Mira Costa College
Jane Beiswenger, University of Wyoming
Tania Beliz, College of San Mateo
Lisa Bellows, North Central Texas College
Ernest Benfield, Virginia Polytechnic Institute
Rudi Berkelhamer, University of California, Irvine
Harry Bernheim, Tufts University
Richard Bliss, Yuba College
Lawrence Blumer, Morehouse College
Dennis Bogyo, Valdosta State University
Lisa K. Bonneau, Metropolitan Community
College, Blue River
Mehdi Borban, Johnson County

Mehdi Borhan, Johnson County Community College

Robert Boyd, Auburn University

Kathleen Bossy, *Bryant College*William Bowen, *University of Arkansas*at Little Rock

Bradford Boyer, State University of New York,
Suffolk County Community College
Paul Boyer, University of Wisconsin
William Bradshaw, Brigham Young University
Agnello Braganza, Chabot College
James Bray, Blackburn College
Peggy Brickman, University of Georgia
Chris Brinegar, San Jose State University
Chad Brommer, Emory University
Charles Brown, Santa Rosa Junior College
Stephen T. Brown, Los Angeles Mission College
Carole Browne, Wake Forest University
Delia Brownson, University of Texas at Austin
and Austin Community College

Becky Brown-Watson, Santa Rosa Junior College Michael Bucher, College of San Mateo Virginia Buckner, Johnson County

Community College Joseph C. Bundy, Jr., University of North Carolina at Greensboro

Ray Burton, Germanna Community College Nancy Buschhaus, University of Tennessee

at Martin
Warren Buss, University of Northern Colorado
Linda Butler, University of Texas at Austin

Jerry Button, *Portland Community College*Carolee Caffrey, *University of California*, *Los Angeles*

George Cain, University of Iowa

Beth Campbell, Itawamba Community College John Campbell, Northern Oklahoma College John Capeheart, University of Houston, Downtown James Cappuccino, Rockland Community College M. Carabelli, Broward Community College Jocelyn Cash, Central Piedmont Community College

Cathryn Cates, Tyler Junior College Russell Centanni, Boise State University David Chambers, Northeastern University Ruth Chesnut, Eastern Illinois University Vic Chow, San Francisco City College Van Christman, Ricks College Craig Clifford, Northeastern State University,

Tahlequah

Richard Cobb, South Maine Community College
Glenn Cohen, Troy University
Mary Colavito, Santa Monica College
Jennifer Cooper, Itawamba Community College
Bob Cowling, Ouachita Technical College
Don Cox, Miami University
Robert Creek, Western Kentucky University
Hillary Cressey, George Mason University
Norma Criley, Illinois Wesleyan University
Jessica Crowe, South Georgia College
Mitch Cruzan, Portland State University
Judy Daniels, Monroe Community College
Michael Davis, Central Connecticut
State University

Pat Davis, East Central Community College Lewis Deaton, University of Louisiana Lawrence DeFilippi, Lurleen B. Wallace College James Dekloe, Solano Community College Veronique Delesalle, Gettysburg College Loren Denney, Southwest Missouri State University

Jean DeSaix, University of North Carolina at Chapel Hill

Mary Dettman, Seminole Community College of Florida

Kathleen Diamond, College of San Mateo Alfred Diboll, Macon College Jean Dickey, Clemson University Stephen Dina, St. Louis University Robert P. Donaldson, George Washington University

Gary Donnermeyer, *Iowa Central Community College*

Charles Duggins, University of South Carolina
Susan Dunford, University of Cincinnati
Lee Edwards, Greenville Technical College
Betty Eidemiller, Lamar University
Jamin Eisenbach, Eastern Michigan University
Norman Ellstrand, University of
California, Riverside

Thomas Emmel, *University of Florida*Cindy Erwin, *City College of San Francisco*Gerald Esch, *Wake Forest University*Nora Espinoza, *Clemson University*David Essar, *Winona State University*Cory Etchberger, *Longview Community College*Nancy Eyster-Smith, *Bentley College*

William Ezell, University of North Carolina at Pembroke Laurie Faber, Grand Rapids Community College Terence Farrell, Stetson University Shannon Kuchel Fehlberg, Colorado Christian University Jerry Feldman, University of California, Santa Cruz Eugene Fenster, Longview Community College Dino Fiabane, Community College of Philadelphia Kathleen Fisher, San Diego State University Edward Fliss, St. Louis Community College, Florissant Valley Linda Flora, Montgomery County Community College Dennis Forsythe, The Citadel Military College of South Carolina Karen E. Francl, Radford University Robert Frankis, College of Charleston James French, Rutgers University Bernard Frye, University of Texas at Arlington Anne Galbraith, University of Wisconsin Robert Galbraith, Crafton Hills College Rosa Gambier, State University of New York, Suffolk County Community College George Garcia, University of Texas at Austin Linda Gardner, San Diego Mesa College Sandi Gardner, Triton College Gail Gasparich, Towson University Janet Gaston, Troy University Shelley Gaudia, Lane Community College Douglas Gayou, University of Missouri at Columbia Robert Gendron, Indiana University of Pennsylvania Bagie George, Georgia Gwinnett College Rebecca German, University of Cincinnati Grant Gerrish, University of Hawaii Julie Gibbs, College of DuPage Frank Gilliam, Marshall University Patricia Glas, The Citadel Military College of South Carolina David Glenn-Lewin, Wichita State University Robert Grammer, Belmont University Laura Grayson-Roselli, Burlington County College Peggy Green, Broward Community College Miriam L. Greenberg, Wayne State University Jennifer Greenwood, University of Tennessee at Martin Sylvia Greer, City University of New York Eileen Gregory, Rollins College Dana Griffin, University of Florida Richard Groover, J. Sargeant Reynolds Community College Peggy Guthrie, University of Central Oklahoma Maggie Haag, University of Alberta Richard Haas, California State University, Fresno Joel Hagen, Radford University Martin Hahn, William Paterson College Leah Haimo, University of California, Riverside James Hampton, Salt Lake Community College Blanche Haning, North Carolina State University Richard Hanke, Rose State College Laszlo Hanzely, Northern Illinois University David Harbster, Paradise Valley Community College Sig Harden, Troy University Montgomery

Reba Harrell, Hinds Community College

Mary Harris, Louisiana State University

Jim Harris, Utah Valley Community College

Chris Haynes, Shelton State Community College Janet Haynes, Long Island University Jean Helgeson, Collin County Community College Ira Herskowitz, University of California, San Francisco Paul Hertz, Barnard College Margaret Hicks, David Lipscomb University Jean Higgins-Fonda, Prince George's Community College Duane A. Hinton, Washburn University Phyllis Hirsch, East Los Angeles College William Hixon, St. Ambrose University Carl Hoagstrom, Ohio Northern University Kim Hodgson, Longwood College Jon Hoekstra, Gainesville State College Kelly Hogan, University of North Carolina at Chapel Hill Amy Hollingsworth, The University of Akron John Holt, Michigan State University Laura Hoopes, Occidental College Lauren Howard, Norwich University Robert Howe, Suffolk University Michael Hudecki, State University of New York, Buffalo George Hudock, Indiana University Kris Hueftle, Pensacola Junior College Barbara Hunnicutt, Seminole Community College Brenda Hunzinger, Lake Land College Catherine Hurlbut, Florida Community College Charles Ide, Tulane University Mark Ikeda, San Bernardino Valley College Georgia Ineichen, Hinds Community College Robert Iwan, Inver Hills Community College Mark E. Jackson, Central Connecticut State University Charles Jacobs, Henry Ford Community College Fred James, Presbyterian College Ursula Jander, Washburn University Alan Jaworski, University of Georgia R. Jensen, Saint Mary's College Robert Johnson, Pierce College, Lakewood Campus Roishene Johnson, Bossier Parish Community College Russell Johnson, Ricks College John C. Jones, Calhoun Community College Florence Juillerat, Indiana University at Indianapolis Tracy Kahn, University of California, Riverside Hinrich Kaiser, Victor Valley College Klaus Kalthoff, University of Texas at Austin Tom Kantz, California State University, Sacramento Jennifer Katcher, Pima Community College Judy Kaufman, Monroe Community College Marlene Kayne, The College of New Jersey Mahlon Kelly, University of Virginia Kenneth Kerrick, University of Pittsburgh at Iohnstown Joyce Kille-Marino, College of Charleston Joanne Kilpatrick, Auburn University, Montgomery Stephen Kilpatrick, University of Pittsburgh at Johnstown Erica Kipp, Pace University Lee Kirkpatrick, Glendale Community College Peter Kish, Southwestern Oklahoma State University Cindy Klevickis, James Madison University Robert Koch, California State University, Fullerton Eliot Krause, Seton Hall University Dubear Kroening, University of Wisconsin, Fox Valley

Dana Kurpius, Elgin Community College Margaret Maile Lam, Kapiolani Community College MaryLynne LaMantia, Golden West College Mary Rose Lamb, University of Puget Sound Dale Lambert, Tarrant County College, Northeast Thomas Lammers, University of Wisconsin, Carmine Lanciani, University of Florida Vic Landrum, Washburn University Deborah Langsam, University of North Carolina at Charlotte Geneen Lannom, University of Central Oklahoma Brenda Latham, Merced College Liz Lawrence, Miles Community College Steven Lebsack, Linn-Benton Community College Karen Lee, University of Pittsburgh at Johnstown Tom Lehman, Morgan Community College William Lemon, Southwestern Oregon Community College Laurie M. Len, El Camino College Peggy Lepley, Cincinnati State University Richard Liebaert, Linn-Benton Community College Kevin Lien, Portland Community College Harvey Liftin, Broward Community College Ivo Lindauer, University of Northern Colorado William Lindsay, Monterey Peninsula College Kirsten Lindstrom, Santa Rosa Junior College Melanie Loo, California State University, Sacramento David Loring, Johnson County Community College Shervl Love, Temple University Eric Lovely, Arkansas Tech University Paul Lurquin, Washington State University James Mack, Monmouth University David Magrane, Morehead State University Joan Maloof, Salisbury State University Joseph Marshall, West Virginia University Presley Martin, Drexel University William McComas, University of Iowa Steven McCullagh, Kennesaw State College Mitchell McGinnis, North Seattle Community College Iames McGivern, Gannon University Colleen McNamara, Albuquerque TVI Community College Caroline McNutt, Schoolcraft College Mark Meade, Jacksonville State University Scott Meissner, Cornell University Joseph Mendelson, Utah State University John Mersfelder, Sinclair Community College Timothy Metz, Campbell University Iain Miller, University of Cincinnati Robert Miller, University of Dubuque V. Christine Minor, Clemson University Andrew Miller, Thomas University Brad Mogen, University of Wisconsin, River Falls James Moné, Millersville University Jamie Moon, University of North Florida Juan Morata, Miami Dade College Richard Mortensen, Albion College Henry Mulcahy, Suffolk University Christopher Murphy, James Madison University Kathryn Nette, Cuyamaca College James Newcomb, New England College Zia Nisani, Antelope Valley College James Nivison, Mid Michigan Community College Peter Nordloh, Southeastern Community College

Kevin Krown, San Diego State University

Stephen Novak, Boise State University
Bette Nybakken, Hartnell College
Michael O'Donnell, Trinity College
Camellia M. Okpodu, Norfolk State University
Steven Oliver, Worcester State College
Karen Olmstead, University of South Dakota
Steven O'Neal, Southwestern Oklahoma
State University

Lowell Orr, Kent State University
William Outlaw, Florida State University
Phillip Pack, Woodbury University
Kevin Padian, University of California, Berkeley
Kay Pauling, Foothill College
Mark Paulissen, Northeastern State University,
Tahlequah

Debra Pearce, Northern Kentucky University
David Pearson, Bucknell University
Patricia Pearson, Western Kentucky University
Kathleen Pelkki, Saginaw Valley State University
Andrew Penniman, Georgia Perimeter College
John Peters, College of Charleston
Gary Peterson, South Dakota State University
Margaret Peterson, Concordia Lutheran College
Russell L. Peterson, Indiana University of
Pennsylvania

Paula Piehl, Potomac State College
Ben Pierce, Baylor University
Jack Plaggemeyer, Little Big Horn College
Barbara Pleasants, Iowa State University
Kathryn Podwall, Nassau Community College
Judith Pottmeyer, Columbia Basin College
Donald Potts, University of California, Santa Cruz
Nirmala Prabhu, Edison Community College
Elena Pravosudova, University of Nevada, Reno
James Pru, Belleville Area College
Rongsun Pu, Kean University
Charles Pumpuni, Northern Virginia
Community College

Kimberly Puvalowski, Old Bridge High School Rebecca Pyles, East Tennessee State University Shanmugavel Rajendran, Baltimore City Community College

Bob Ratterman, Jamestown Community College
James Rayburn, Jacksonville State University
Jill Raymond, Rock Valley College
Michael Read, Germanna Community College
Brian Reeder, Morehead State University
Bruce Reid, Kean College
David Reid, Blackburn College
Stephen Reinbold, Longview Community College
Erin Rempala, San Diego Mesa College
Michael Renfroe, James Madison University
Tim Revell, Mt. San Antonio College
Douglas Reynolds, Central Washington
University

Fred Rhoades, Western Washington University
Ashley Rhodes, Kansas State University
John Rinehart, Eastern Oregon University
Laura Ritt, Burlington County College
Lynn Rivers, Henry Ford Community College
Bruce Robart, University of Pittsburgh
at Johnstown

Jennifer Roberts, *Lewis University* Laurel Roberts, *University of Pittsburgh* Lori B. Robinson, *Georgia College &* State University Luis A. Rodriguez, San Antonio Colleges
Ursula Roese, University of New England
Duane Rohlfing, University of South Carolina
Jeanette Rollinger, College of the Sequoias
Steven Roof, Fairmont State College
Jim Rosowski, University of Nebraska
Stephen Rothstein, University of California,
Santa Barbara

Donald Roush, *University of North Alabama* Lynette Rushton, *South Puget Sound* Community College

Connie Rye, East Mississippi Community College Linda Sabatino, State University of New York,

Suffolk County Community College
Douglas Schamel, University of Alaska, Fairbanks
Douglas Schelhaas, University of Mary
Beverly Schieltz, Wright State University
Fred Schindler, Indian Hills Community College
Robert Schoch, Boston University
Brian Scholtens, College of Charleston
John Richard Schrock, Emporia State University
Doreen J. Schroeder, University of St. Thomas
Julie Schroer, Bismarck State College
Fayla Schwartz, Everett Community College
Justin Shaffer, North Carolina A&T
State University

Judy Shea, Kutztown University of Pennsylvania
Daniela Shebitz, Kean University
Thomas Shellberg, Henry Ford Community College
Cara Shillington, Eastern Michigan University
Lisa Shimeld, Crafton Hills College
Brian Shmaefsky, Kingwood College
Marilyn Shopper, Johnson County
Community College

Mark Shotwell, Slippery Rock University
Jane Shoup, Purdue University
Michele Shuster, New Mexico State University
Ayesha Siddiqui, Schoolcraft College
Linda Simpson, University of North Carolina
at Charlotte

Gary Smith, Tarrant County Junior College Marc Smith, Sinclair Community College Michael Smith, Western Kentucky University Phil Snider, University of Houston Sam C. Sochet, Thomas Edison Career and

Technical Education High School
Gary Sojka, Bucknell University
Ralph Sorensen, Gettysburg College
Ruth Sporer, Rutgers University
Ashley Spring, Brevard Community College
Thaxton Springfield, St. Petersburg College
Linda Brooke Stabler, University of Central
Oklahoma

David Stanton, Saginaw Valley State University
Amanda Starnes, Emory University
Patrick Stokley, East Central Community College
John Stolz, Duquesne University
Ross Strayer, Washtenaw Community College
Donald Streuble, Idaho State University
Megan Stringer, Jones County Junior College
Mark Sugalski, New England College
Sukanya Subramanian, Collin County
Community College

Gerald Summers, *University of Missouri* Marshall Sundberg, *Louisiana State University* Christopher Tabit, *University of West Georgia* David Tauck, Santa Clara University Hilda Taylor, Acadia University Franklin Te, Miami Dade College Gene Thomas, Solano Community College Kenneth Thomas, Northern Essex Community College

Kathy Thompson, Louisiana State University Laura Thurlow, Jackson Community College Anne Tokazewski, Burlington County College John Tolli, Southwestern College Lori Tolley-Jordan, Jacksonville State University Bruce Tomlinson, State University of

New York, Fredonia Nancy Tress, University of Pittsburgh at Titusville Jimmy Triplett, Jacksonville State University Donald Trisel, Fairmont State College Kimberly Turk, Mitchell Community College Virginia Turner, Harper College Mike Tveten, Pima College Michael Twaddle, University of Toledo Rani Vajravelu, University of Central Florida Leslie VanderMolen, Humboldt State University Cinnamon VanPutte, Southwestern Illinois College Sarah VanVickle-Chavez, Washington University John Vaughan, Georgetown College Martin Vaughan, Indiana University Mark Venable, Appalachian State University Ann Vernon, St. Charles County

Rukmani Viswanath, *Laredo Community College*Frederick W. Vogt, *Elgin Community College*Mary Beth Voltura, *State University of*New York, Cortland

Community College

Jerry Waldvogel, Clemson University
Robert Wallace, Ripon College
Dennis Walsh, MassBay Community College
Patricia Walsh, University of Delaware
Lisa Weasel, Portland State University
James Wee, Loyola University
Harrington Wells, University of Tulsa
Jennifer Wiatrowski, Pasco-Hernando
Community College

Larry Williams, University of Houston
Ray S. Williams, Appalachian State University
Lura Williamson, University of New Orleans
Sandra Winicur, Indiana University, South Bend
Robert R. Wise, University of Wisconsin Oshkosh
Mary E. Wisgirda, San Jacinto College
Mary Jo Witz, Monroe Community College
Neil Woffinden, University of Pittsburgh
at Johnstown

Michael Womack, Macon State University
Patrick Woolley, East Central College
Maury Wrightson, Germanna Community College
Tumen Wuliji, University of Nevada, Reno
Mark Wygoda, McNeese State University
Tony Yates, Seminole State College
Jennifer J. Yeh, San Francisco, California
William Yurkiewicz, Millersville University
of Pennsylvania

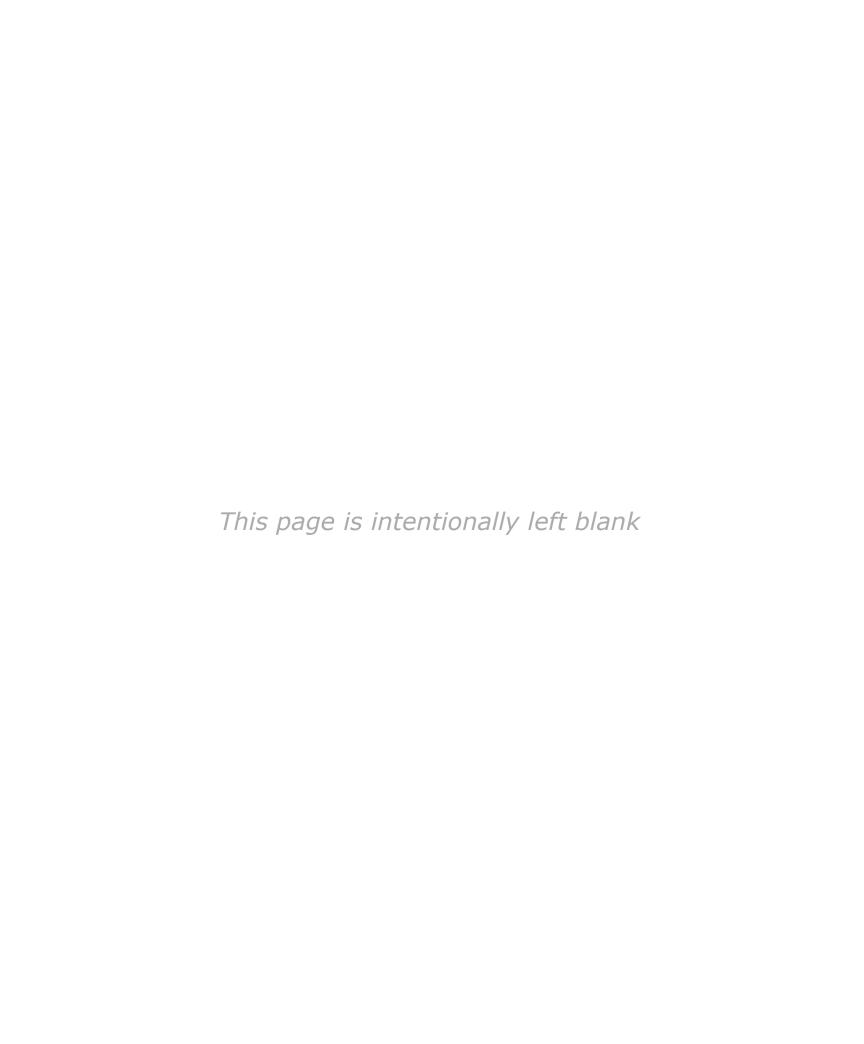
of Pennsylvania Gregory Zagursky, Radford University Martin Zahn, Thomas Nelson Community College Edward J. Zalisko, Blackburn College David Zeigler, University of North Carolina at Pembroke

Uko Zylstra, Calvin College

Acknowledgments for the Global Edition

Contributors

Fabrice Caudron, *Queen Mary University of London* Kathryn Ford, *University of Bristol*


Reviewers

Mohamad Faiz Foong Abdullah, *Universiti Teknologi MARA* Said Damhoureyeh, *The University of Jordan* Kathryn Ford, *University of Bristol* Juan-Pablo Labrador, *Trinity College Dublin* Hsin-Chen Lee, *National Yang Ming Chiao Tung University* Bruce Osborne, *University College of Dublin* Sandra Varga, *University of Lincoln*

Contributors and Reviewers of the Previous Editions

Mohamad Faiz Foong Abdullah, *Universiti Teknologi MARA* Laura Andreae, *King's College London*Sreeparna Banerjee, *Middle East Technical University*Susan Barker, *The University of Western Australia*Prasad Chunduri, *The University of Queensland*Sumitra Datta, *Cochin University of Science and Technology*Michael Emmerling, *La Trobe University*

Johannes Enroth, University of Helsinki Gilbert Evans, The American School of Dubai Chris Finlay, The University of Glasgow Caroline Formstone, King's College London Naoki Irie, University of Tokyo Louise Kuchel, The University of Queensland Sarita Kumar, Delhi University Juan-Pablo Labrador, Trinity College Dublin Tasmin Lee Rymer, James Cook University Anita Malhotra, Bangor University Liana Maree, University of Western Cape Elizabeth R. Martin, D. Phil Mary McMillan, University of New England Audrey O'Grady, *University of Limerick* Caroline Orr, Teesside University Pushpa Sinnayah, Victoria University Katie Smith, The University of York Garth Stephenson, Deakin University Sarah Taylor, Keele University Christian van Den Branden, Vrije Universiteit Brussel Lau Quek Choon, Ngee Ann Polytechnic

Detailed Contents

1 Biology: Exploring Life 42

Biology: The Scientific Study of Life 44

- **1.1** Biology is the scientific study of life 44
- **1.2** Biologists arrange the diversity of life into three domains 45
- 1.3 VISUALIZING THE CONCEPT
 In life's hierarchy of organization, new properties emerge at each level 46

The Process of Science 48

- **1.4** What is science? 48
- **1.5** Hypotheses can be tested using controlled experiments 49
- **1.6 SCIENTIFIC THINKING** Hypotheses can be tested using observational data 50
- **1.7** The process of science is repetitive, nonlinear, and collaborative 50
- **1.8 CONNECTION** Biology, technology, and society are connected in important ways 51

Five Unifying Themes in Biology 52

- **1.9** Theme: Evolution is the core theme of biology 52
- **1.10 EVOLUTION CONNECTION** Evolution is connected to our everyday lives 54
- **1.11** Theme: Life depends on the flow of information 54
- **1.12** Theme: Structure and function are related 56
- **1.13** Theme: Life depends on the transfer and transformation of energy and matter 57
- **1.14** Theme: Life depends on interactions within and between systems 58

Chapter Review 59

UNIT

The Life of the Cell 61

2 The Chemical Basis of Life 62

Elements, Atoms, and Compounds 64

- **2.1** Organisms are composed of elements, usually combined into compounds 64
- 2.2 CONNECTION

 Trace elements are common additives to food and water 65

- **2.3** Atoms consist of protons, neutrons, and electrons 66
- **2.4 CONNECTION** Radioactive isotopes can help or harm us 67

Chemical Bonds 68

- **2.5** The distribution of electrons determines an atom's chemical properties 68
- **2.6 VISUALIZING THE CONCEPT** Covalent bonds join atoms into molecules through electron sharing 69
- **2.7** Ionic bonds are attractions between ions of opposite charge 70
- **2.8** Hydrogen bonds are weak bonds important in the chemistry of life 70
- **2.9** Chemical reactions make and break chemical bonds 71

Water's Life-Supporting Properties 72

- **2.10** Hydrogen bonds make liquid water cohesive 72
- **2.11** Water's hydrogen bonds moderate temperature 72
- **2.12** Ice floats because it is less dense than liquid water 73
- **2.13** Water is the solvent of life 73
- **2.14** The chemistry of life is sensitive to acidic and basic conditions 74
- **2.15 SCIENTIFIC THINKING** Scientists study the effects of rising atmospheric CO₂ on coral reef ecosystems 74
- **2.16 EVOLUTION CONNECTION** The search for extraterrestrial life centers on the search for water 75

Chapter Review 76

3 The Molecules of Cells 78

Introduction to Organic Compounds 80

- **3.1** Life's molecular diversity is based on the properties of carbon 80
- **3.2** A few chemical groups are key to the functioning of biological molecules 81
- 3.3 Cells make large molecules from a limited set of small molecules 82

Carbohydrates 83

- **3.4** Monosaccharides are the simplest carbohydrates 83
- **3.5** Two monosaccharides are linked to form a disaccharide 84
- **3.6 CONNECTION** Are we eating too much sugar? 84
- **8.7** Polysaccharides are long chains of sugar units 85

Lipids 86

- **3.8** Fats are lipids that are mostly energy-storage molecules 86
- **3.9 SCIENTIFIC THINKING** Scientific studies document the health risks of trans fats 87
- **3.10** Phospholipids and steroids are important lipids with a variety of functions 88
- **3.11 CONNECTION** Anabolic steroids pose health risks 88

Proteins 89

- **3.12** Proteins have a wide range of functions and structures 89
- **3.13** Proteins are made from amino acids linked by peptide bonds 90
- **3.14 VISUALIZING THE CONCEPT** A protein's functional shape results from four levels of structure 91

Nucleic Acids 92

- **3.15** The nucleic acids DNA and RNA are information-rich polymers of nucleotides 92
- **3.16 EVOLUTION CONNECTION** Lactose tolerance is a recent event in human evolution 93

Chapter Review 94

4 A Tour of the Cell 96

Introduction to the Cell 98

- **4.1** Microscopes reveal the world of the cell 98
- 4.2 The small size of cells relates to the need to exchange materials across the plasma membrane 100

- **4.3** Prokaryotic cells are structurally simpler than eukaryotic cells 101
- **4.4** Eukaryotic cells are partitioned into functional compartments 102

The Nucleus and Ribosomes 104

- **4.5** The nucleus contains the cell's genetic instructions 104
- **4.6** Ribosomes make proteins for use in the cell and for export 105

The Endomembrane System 105

- **4.7** Many organelles are connected in the endomembrane system 105
- **4.8** The endoplasmic reticulum is a biosynthetic workshop 106
- **4.9** The Golgi apparatus modifies, sorts, and ships cell products 107
- **4.10** Lysosomes are digestive compartments within a cell 108
- **4.11** Vacuoles function in the general maintenance of the cell 108
- **4.12** A review of the structures involved in manufacturing and breakdown 109

Energy-Converting Organelles 109

4.13 Mitochondria harvest chemical energy from food 109

- **4.14** Chloroplasts convert solar energy to chemical energy 110
- **4.15 EVOLUTION CONNECTION** Mitochondria and chloroplasts evolved by endosymbiosis 110

The Cytoskeleton and Cell Surfaces 111

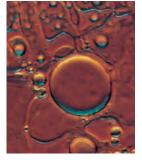
- **4.16** The cell's internal skeleton helps organize its structure and activities 111
- **4.17 SCIENTIFIC THINKING** Scientists discovered the cytoskeleton using the tools of biochemistry and microscopy 112
- **4.18** Cilia and flagella move when microtubules bend 112
- **4.19** The extracellular matrix of animal cells functions in support and regulation 113
- **4.20** Three types of cell junctions are found in animal tissues 114
- **4.21** Cell walls enclose and support plant cells 114
- **4.22** Review: Eukaryotic cell structures can be grouped on the basis of four main functions 115

Chapter Review 116

5 The Working Cell 118

Membrane Structure and Function 120

- 5.1 VISUALIZING THE CONCEPT


 Membranes are fluid

 mosaics of lipids and

 proteins with many

 functions 120
- 5.2 EVOLUTION CONNECTION

 The spontaneous formation of membranes was a critical step in the origin of life 121

- **5.3** Passive transport is diffusion across a membrane with no energy investment 121
- **5.4** Osmosis is the diffusion of water across a membrane 122
- **5.5** Water balance between cells and their surroundings is crucial to organisms 122
- **5.6** Transport proteins can facilitate diffusion across membranes 123
- **5.7 SCIENTIFIC THINKING** Research on another membrane protein led to the discovery of aquaporins 124
- **5.8** Cells expend energy in the active transport of a solute 124
- **5.9** Exocytosis and endocytosis transport large molecules across membranes 125

Energy and the Cell 126

- **5.10** Cells transform energy and matter as they perform work 126
- **5.11** Chemical reactions either release or store energy 127
- **5.12** ATP drives cellular work by coupling exergonic and endergonic reactions 128

How Enzymes Function 129

5.13 Enzymes speed up the cell's chemical reactions by lowering energy barriers 129

- **5.14** A specific enzyme catalyzes each cellular reaction 130
- **5.15** Enzyme inhibition can regulate enzyme activity in a cell 131
- **5.16 CONNECTION** Many drugs, pesticides, and poisons are enzyme inhibitors 131

Chapter Review 132

6 How Cells Harvest Chemical Energy 134

Cellular Respiration: Aerobic Harvesting of Energy 136

- **6.1** Photosynthesis and cellular respiration provide energy for life 136
- **6.2** Breathing supplies O₂ for use in cellular respiration and removes CO₂ 136
- 6.3 Cellular respiration banks energy in ATP molecules 137
- **6.4 CONNECTION** The human body uses energy from ATP for all its activities 137
- **6.5** Cells capture energy from electrons "falling" from organic fuels to oxygen 138

Stages of Cellular Respiration 139

- **6.6** Overview: Cellular respiration occurs in three main stages 139
- **6.7** Stage 1: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 140
- **6.8** Multiple reactions in glycolysis split glucose into two molecules 140
- **6.9** Stage 2: The citric acid cycle completes the energy-yielding oxidation of organic molecules 142
- **6.10** The multiple reactions of the citric acid cycle finish off the dismantling of glucose 143
- **6.11 VISUALIZING THE CONCEPT** Stage 3: Most ATP production occurs by oxidative phosphorylation 144
- **6.12 SCIENTIFIC THINKING** Scientists have discovered heat-producing, calorie-burning brown fat in adults 145
- **6.13** Review: Each molecule of glucose yields many molecules of ATP 146

Fermentation: Anaerobic Harvesting of Energy 146

- **6.14** Fermentation enables cells to produce ATP without oxygen 146
- **6.15 EVOLUTION CONNECTION** Glycolysis evolved early in the history of life on Earth 148

Connections Between Metabolic Pathways 148

- **6.16** Cells use many kinds of organic molecules as fuel for cellular respiration 148
- **6.17** Organic molecules from food provide raw materials for biosynthesis 149

Chapter Review 150

7 Photosynthesis: Using Light to Make Food 152

An Introduction to Photosynthesis 154

- **7.1** Photosynthesis powers most life on Earth 154
- **7.2** Photosynthesis occurs in chloroplasts in plant cells 155
- **7.3** Scientists traced the process of photosynthesis using isotopes 156
- **7.4** Photosynthesis is a redox process 156
- **7.5** Photosynthesis occurs in two stages, which are linked by ATP and NADPH 157

The Light Reactions: Converting Solar Energy to Chemical Energy 158

- **7.6** Visible radiation absorbed by pigments drives the light reactions 158
- **7.7** Photosystems capture solar energy 159
- **7.8** Two photosystems connected by an electron transport chain convert light energy to the chemical energy of ATP and NADPH 160
- **7.9 VISUALIZING THE CONCEPT** The light reactions take place within the thylakoid membranes 161

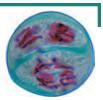
The Calvin Cycle: Reducing CO₂ to Sugar 162

- **7.10** ATP and NADPH power sugar synthesis in the Calvin cycle 162
- **7.11 EVOLUTION CONNECTION** Other methods of carbon fixation have evolved in hot, dry climates 163

The Global Significance of Photosynthesis 164

- **7.12** Photosynthesis provides food and O₂ for almost all living organisms 164
- **7.13 SCIENTIFIC THINKING** Rising atmospheric levels of carbon dioxide may affect plants in various ways 165
- **7.14 CONNECTION** Reducing both fossil fuel use and deforestation may moderate climate change 166

Chapter Review 167


UNIT II

Cellular Reproduction and Genetics 169

8 The Cellular Basis of Reproduction and Inheritance 170

Cell Division and Reproduction 172

8.1 Cell division plays many important roles in the lives of organisms 172

The Eukaryotic Cell Cycle and Mitosis 174

- **8.3** The large, complex chromosomes of eukaryotes duplicate with each cell division 174
- **8.4** The cell cycle includes growth and division phases 175
- **8.5** Cell division is a continuum of dynamic changes 176
- **8.6** Cytokinesis differs for plant and animal cells 178
- **8.7** The rate of cell division is affected by environmental factors 179
- **8.8** Growth factors signal the cell cycle control system 180
- **8.9 CONNECTION** Growing out of control, cancer cells produce malignant tumors 181
- **8.10 SCIENTIFIC THINKING** The best cancer treatment may vary by individual 182

Meiosis and Crossing Over 182

- **8.11** Chromosomes are matched in homologous pairs 182
- **8.12** Gametes have a single set of chromosomes 183
- **8.13** Meiosis reduces the chromosome number from diploid to haploid 184
- **8.14 VISUALIZING THE CONCEPT** Mitosis and meiosis have important similarities and differences 186
- **8.15** Independent orientation of chromosomes in meiosis and random fertilization lead to varied offspring 187
- **8.16** Homologous chromosomes may carry different versions of genes 188
- **8.17 VISUALIZING THE CONCEPT** Crossing over further increases genetic variability 189

Alterations of Chromosome Number and Structure 190

- **8.18** Accidents during meiosis can alter chromosome number 190
- **8.19** A karyotype is a photographic inventory of an individual's chromosomes 191
- **8.20 CONNECTION** An extra copy of chromosome 21 causes Down syndrome 192
- **8.21 CONNECTION** Abnormal numbers of sex chromosomes do not usually affect survival 193
- **8.22 EVOLUTION CONNECTION** New species can arise from errors in cell division 193
- **8.23 CONNECTION** Alterations of chromosome structure can cause birth defects and cancer 194

Chapter Review 195

9 Patterns of Inheritance 198

Mendel's Laws 200

- **9.1** The study of genetics has ancient roots 200
- **9.2** The science of genetics began in an abbey garden 200
- **9.3** Mendel's law of segregation describes the inheritance of a single character 202

- **9.4** Homologous chromosomes bear the alleles for each character 203
- **9.5** The law of independent assortment is revealed by tracking two characters at once 204
- **9.6** Geneticists can use a testcross to determine unknown genotypes 205
- **9.7** Mendel's laws reflect the rules of probability 206
- **9.8 VISUALIZING THE CONCEPT** Genetic traits in humans can be tracked through family pedigrees 207
- **9.9 CONNECTION** Many inherited traits in humans are controlled by a single gene 208
- **9.10 CONNECTION** New technologies can provide insight into one's genetic legacy 210

Variations on Mendel's Laws 212

- **9.11** Incomplete dominance results in intermediate phenotypes 212
- **9.12** Many genes have more than two alleles that may be codominant 213
- **9.13** A single gene may affect many phenotypic characters 214
- **9.14** A single character may be influenced by many genes 215
- **9.15** The environment affects many characters 216

The Chromosomal Basis of Inheritance 216

- **9.16** Chromosome behavior accounts for Mendel's laws 216
- **9.17 SCIENTIFIC THINKING** Genes on the same chromosome tend to be inherited together 218
- **9.18** Crossing over produces new combinations of alleles 218
- **9.19** Geneticists use crossover data to map genes 220

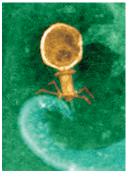
Sex Chromosomes and Sex-Linked Genes 220

- **9.20** Chromosomes determine sex in many species 220
- **9.21** Sex-linked genes exhibit a unique pattern of inheritance 222
- **9.22 CONNECTION** Human sex-linked disorders affect mostly males 223
- **9.23 EVOLUTION CONNECTION** The Y chromosome provides clues about human male evolution 223

Chapter Review 224

10 Molecular Biology of the Gene 226

The Structure of the Genetic Material 228


10.1 SCIENTIFIC THINKING

Experiments showed that DNA is the genetic material 228

- **10.2** DNA and RNA are polymers of nucleotides 230
- **10.3** DNA is a double-stranded helix 232

DNA Replication 234

- **10.4** DNA replication depends on specific base pairing 234
- **10.5** DNA replication proceeds in two directions at many sites simultaneously 234

